MOCK MODULAR FORMS AS p-ADIC MODULAR FORMS
نویسنده
چکیده
In this paper, we consider the question of correcting mock modular forms in order to obtain p-adic modular forms. In certain cases we show that a mock modular form M is a p-adic modular form. Furthermore, we prove that otherwise the unique correction of M is intimately related to the shadow of M.
منابع مشابه
p-ADIC PROPERTIES OF MODULAR SHIFTED CONVOLUTION DIRICHLET SERIES
Ho stein and Hulse recently introduced the notion of shifted convolution Dirichlet series for pairs of modular forms f1 and f2. The second two authors investigated certain special values of symmetrized sums of such functions, numbers which are generally expected to be mysterious transcendental numbers. They proved that the generating functions of these values in the h-aspect are linear combinat...
متن کاملp-Adic coupling of mock modular forms and shadows.
A "mock modular form" is the holomorphic part of a harmonic Maass form f. The nonholomorphic part of f is a period integral of its "shadow," a cusp form g. A direct method for relating the coefficients of shadows and mock modular forms is not known. We solve these problems when the shadow is an integer weight newform. Our solution is p-adic, and it relies on our definition of an algebraic "regu...
متن کامل`-adic Properties of Smallest Parts Functions
We prove explicit congruences modulo powers of arbitrary primes for three smallest parts functions: one for partitions, one for overpartitions, and one for partitions without repeated odd parts. The proofs depend on `-adic properties of certain modular forms and mock modular forms of weight 3/2 with respect to the Hecke operators T (`).
متن کاملElliptic Curves , Modular Forms and Related
Nick Andersen (University of California, Los Angeles) Kloosterman sums and Maass cusp forms of half-integral weight ABSTRACT: Kloosterman sums play an important role in modern analytic number theory. I will give a brief survey of what is known about the classical Kloosterman sums and their connection to Maass cusp forms of weight 0. I will then talk about recent progress toward bounding sums of...
متن کاملAn Approach to the p - adic Theory of Jacobi Forms
The theory of p-adic modular forms was developed by J.-P. Serre [8] and N. Katz [5]. This theory is by now considered classical. Investigation of p-adic congruences for modular forms of half-integer weight was carried out by N. Koblitz [6] and led him to deep conjectures. It seems natural to search for p-adic properties of other types of automorphic forms. In this paper we use the Serre approac...
متن کامل